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Abstract

Integrating multimodal emotion sensing modules in realizing
human-centered technologies is rapidly growing. Despite re-
cent advancement of deep architectures in improving recogni-
tion performances, inability to handle individual differences in
the expressive cues creates a major hurdle for real world ap-
plications. In this work, we propose a Speaker-aligned Graph
Memory Network (SaGMN) that leverages the use of speaker
embedding learned from a large speaker verification network to
characterize such an individualized personal difference across
speakers. Specifically, the learning of the gated memory block
is jointly optimized with a speaker graph encoder which aligns
similar vocal characteristics samples together while effectively
enlarge the discrimination across emotion classes. We evalu-
ate our multimodal emotion recognition network on the CMU-
MOSEI database and achieve a state-of-art accuracy of 65.1%
UAR and 74.7% F1 score. Further visualization experiments
demonstrate the effect of speaker space alignment with the use
of graph memory blocks.
Index Terms: emotion recognition, speaker embedding, graph,
memory network

1. Introduction
Emotion recognition technology has attracted substantial atten-
tion due to a surge of various human-centered applications, such
as conversational AI systems, human robot interactions, and
voice-based services. Advancements in deep learning architec-
tures with the increasing availability of affective corpora have
together brought a significant improvement in emotion recogni-
tion algorithms and also the generalizability of these technical
frameworks across databases. However, a major challenge in
obtaining a reliable emotion recognition for real world appli-
cations remains due to the natural individual differences that
create a vast amount of variability in the multimodal expressive
behaviors (e.g., speech, language, facial expressions). These
individual differences are manifested as emotion expressed,
elicited, and experienced and are characterized by each indi-
vidual’s unique life history [1]. Nowadays, collecting adequate
amount of data from an individual user is no longer a bottle-
neck given the proliferation of media data, such as broadcast
news, monologue vlogs, and political debates [2]. The abil-
ity to handle individual differences to further improve emotion
recognition is becoming a crucial next direction of research.

Past literature have generally agreed that the underlying
mechanism in emotion processing, i.e., from experiencing, reg-
ulating, to expressing, involves multi-component constructs
with complex evolutionary, physiological, cognitive and social
factors. These emotion-related constructs often intertwine with
personal attributes such as age, gender, and personality, which

jointly affect one’s multimodal emotion expressions in a sponta-
neous manner [3, 4]. In fact, many past research studies have in-
deed shown the influences of these attributes and demonstrated
the effectiveness in jointly considering their effect when devel-
oping emotion recognition algorithms [5]. Exemplary works in-
clude: Sagha et al. investigate technique of model selection by
considering these personal attributes which yields improved va-
lence recognition [6]; Zhang et al. perform feature space learn-
ing that encodes gender as distributional embedding instead of
using a simple one-hot vector [7]; Li et al. estimate personality
attributes of a target speaker and integrate this attribute for emo-
tion recognition through an attention mechanism [8]; several
research works cast this issue in terms of a speaker-dependent
setup which can be dealt with by directly incorporating speaker
identity to enhance the recognition performance [3, 9, 10].

While these approaches of integrating static personal at-
tributes as additional input features to the recognition frame-
works help improve the performances, they tend to ignore the
interactive effect of these factors in the modulating of one’s be-
havior. Moreover, exhausting all individual attributes or simply
expanding speaker index to account for individual differences
in emotion expressions is impractical in real world applications.
Recently, there have been attempts to utilize speaker represen-
tation techniques from speaker recognition (SR) community in
order to provide robust characterization of each subject for emo-
tion recognition task. This idea presents an intriguing technical
challenge where on one hand SR tasks focus on enlarging inter-
speaker variability with minimal intra-speaker variability, and
emotion recognition task tend to broaden intra-speaker affec-
tive distribution with minimal inter-speaker influence. Several
recent works include: Bancroft et al. report improved results us-
ing a speaker verification framework to retrieve target speaker’s
emotion state [11]; Williams et al. present that style and emo-
tion can be disentangled in speaker embedding [12]; Pappagari
et al. devise a transfer learning scheme to examine mutual influ-
ences between the two tasks [13]; Li et al. attempt to eliminate
speaker information to generalize SER across domains [14]; our
previous work is one of the first works in constructing a speaker
space via semantic word classes to encode individual variability
in the emotion network learning strategy [15].

In this work, we follow a similar learning strategy to in-
corporate speaker embedding jointly in the learning of multi-
modal emotion recognition networks. Specifically, we propose
a Speaker-aligned Graph Memory Network (SaGMN) consist-
ing of an attentive memory network as the multimodal back-
bone architecture with its memory block jointly optimized with
a speaker graph encoding network. The backbone multimodal
network is an improved memory fusion network [16] with at-
tention mechanism. We additionally impose a graph convolu-
tional layer in the memory block whose adjacency matrix is
constructed based on between speaker’s embedding distances,
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Figure 1: Our framework SaGMN has a multimodal backbone network with a speaker aligned memory block. The similarity of speaker
embeddings extracted from pre-trained speaker recognition network are used to derive adjacency matrix for the graph convolutional
layer in the memory block. The resulting memory vector and multimodal attended vectors are used for the final emotion recognition.

i.e., aligning (moving samples closer) similar speaker character-
istics samples together, to achieve the desired effect of minimal
inter-speaker differences while optimizing for emotion classifi-
cation discrimination. We evaluate our framework on a large
speaker set CMU-MOSEI database [17] and achieve a 74.7 F1
score and 65.1% UAR. Our analysis experiment illustrate the
effect of speaker alignment via memory visualization.

2. Method
2.1. Database

2.1.1. Multimodal Emotion Database

In this work, we utilize a multimodal sentiment and emotion
database, the CMU-MOSEI [17], which contains 3228 mono-
logue movie review video clips selected from YouTube after
manual quality inspection. Each video is around 40-50 seconds
long, and there are a total of 23,453 sentences given by gen-
der balanced speakers. Each sentence is manually annotated
with a value in the range of [0,3] indicating the occurrence of
six emotions (angry, disgust, fear, happiness, sadness, and sur-
prise). We binarized the annotation by considering those emo-
tion types with value greater than zero indicating the presence
of that specific emotion, i.e., label equals to one and zero other-
wise. Each sentence could have multiple emotion present.

2.1.2. Multimodal Features

We utilize the multimodal features provided by the CMU-
multimodal SDK [18] as the original paper, which includes 74
dimensional COVAREP acoustic features [19], 711 dimensional
OpenFace visual features [20], and 300 dimensional Glove tex-
tual features [21]. The acoustic features comprise 12 MFCC,
pitch, voiced/unvoiced segmenting features, glottal source pa-
rameters, peak slope parameters and maxima dispersion quo-
tients. The visual features contain facial landmarks, facial shape
parameters, facial HOG features, head pose, head orientation
and eye gaze. The average acoustic visual features are word
aligned to word level using the P2FA tool [22]. We use these
multimodal features as input to our framework.

2.2. Speaker Aligned Multimodal Emotion Recognition

Figure 1 shows overall architecture. It has a multimodal Atten-
tive Memory Fusion Network (AMFN) as a backbone network
to preform emotion recognition. We propose a novel mecha-
nistic graph-gated memory block to include individual speaker
characteristics, and the adjacency matrix of the graph is built on
speaker embedding extracted from a pre-trained speaker recog-
nition network. We will detail each component in the following
sections.

2.2.1. Speaker Embedding Network

To represent each speaker, we use a pre-trained speaker recog-
nition model on VoxCeleb2 database which is a large uncon-
ditioned audio recording database with over 1 million utter-
ances from over 6000 speakers [23]. The pre-trained model is
based on the GhostVLAD deep network with thin ResNet-34
front-end architecture [24]. The GhostVLAD layer has the abil-
ity to aggregate frame-level features into robust utterance-level
speaker embedding. During training, an angular space margin
softmax loss Li optimizes for verification which computes the
cost in assigning each sample to the correct speaker class yi.

Li = − log
exps(cos θyi−m)

exps(cos θyi−m) +
∑
j 6=yi exp

s(cos θyj )
(1)

where hyper-parameters s and m are temperature for softmax
and angular margin which are set as 30 and 0.4, respectively.
The extracted speaker embedding from this pre-trained network
encodes fine-grained individual speaker’s vocal characteristics
that helps achieve the state-of-the-art speaker verification accu-
racy. Finally, since each speaker utters multiple sentences, we
take the average of speaker embedding over each of the uttered
sentences as the speaker embedding that will be used in con-
structing the speaker graph.

2.2.2. Speaker-aligned Graph Memory Network

Our backbone multimodal framework, i.e., termed as AMFN, is
an improved memory fusion network (MFN) [16] which incor-
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Table 1: The results of multimodal binary emotion classification on CMU-MOSEI database

LF-LSTM MFN GMFN AMFN P-AMFN SaGMN
WA F1 UAR WA F1 UAR WA F1 UAR WA F1 UAR WA F1 UAR WA F1 UAR

Anger 0.648 0.672 0.619 0.518 0.548 0.607 0.580 0.613 0.590 0.613 0.643 0.613 0.637 0.663 0.622 0.703 0.717 0.650
Disgust 0.706 0.738 0.697 0.656 0.697 0.692 0.632 0.676 0.694 0.725 0.752 0.690 0.726 0.754 0.713 0.761 0.782 0.728

Fear 0.846 0.853 0.534 0.757 0.800 0.526 0.651 0.730 0.588 0.819 0.840 0.562 0.776 0.816 0.574 0.801 0.833 0.587
Happy 0.633 0.632 0.628 0.644 0.643 0.650 0.676 0.675 0.673 0.649 0.649 0.652 0.661 0.662 0.663 0.701 0.701 0.699

Sad 0.653 0.669 0.585 0.593 0.622 0.586 0.482 0.507 0.574 0.607 0.635 0.606 0.667 0.681 0.598 0.698 0.707 0.627
Surprise 0.639 0.712 0.564 0.652 0.723 0.580 0.735 0.781 0.572 0.757 0.796 0.585 0.754 0.791 0.546 0.680 0.744 0.615

AVG 0.688 0.713 0.605 0.637 0.672 0.607 0.626 0.664 0.615 0.695 0.719 0.618 0.704 0.728 0.619 0.724 0.747 0.651

porates additional modality specific attention blocks to mod-
els the temporal dependencies. AMFN has parallel modality
specific attentive-LSTM systems with a gated memory block to
extract cross modality dynamics in each time step. For m =
{T, V,A} denoting textual, visual, and acoustic modality, the
LSTM cell state is written as cm = {ctm : t ≤ T, ctm ∈ RDm}
and the output state is hm = {htm : t ≤ T, htm ∈ RDm} where
Dm is the LSTM hidden dimension. The concatenation of cur-
rent and previous cell states from the three modalities is denoted
as c[t−1,t] serves as the input to the gated memory block.

In this work, we extend our original idea in capturing inter-
speaker relation via similarity estimation to account for indi-
vidual difference [8], we construct a graph that integrate the
speaker similarity into a network layer. Specifically, we im-
pose a graph convolutional (GC) layer [25], fGC , to transform
c[t−1,t] using the adjacency matrix A:

c
[t−1,t]
Sp = fGC(c

[t−1,t], A) = ReLU(Ac[t−1,t]W ) (2)

where W is the learnable weight of fGC . Each element of the
adjacency matrix Aij indicates the dot product similarity com-
puted between the ith and jth speaker pair using their speaker
embedding (described in section 2.2.1). The use of GC layer
links the utterances, i.e., the nodes on the graph, with other
nodes that are similar in terms of speaker’s embedding; this
transforms the original multimodal feature space by aligning
utterances to a speaker-aware space. We use a dense layer fa
followed by a softmax layer to learn attention coefficients from
c
[t−1,t]
Sp , and multiply them together which results in the final

attended vector ĉt.

a[t−1,t] = fa(c
[t−1,t]
Sp ) (3)

ĉt = c
[t−1,t]
Sp � u[t−1,t] (4)

We obtain a memory vector ût by feeding ĉt to a dense network.
Concatenating a[t−1,t] and ĉt through two neural networks fγ1
and fγ2 with sigmoid function, we derive update gates γt1 and
γt2 for the stored memory ut−1 and ĉt, respectively.

ût = fû(ĉ
t) (5)

γt1 = fγ1([ĉ
t;ut−1]), γt2 = fγ2([ĉ

t;ut−1]) (6)

ut = γt1 � ut−1 + γt2 � ût (7)

Note that γt1 and γt2 each controls how much the stored mem-
ory to keep and new memory to update. This gated process
lasts until the final time step T which results in uT . We de-
vise this new gated memory block with inputs first transformed
through the speaker aligned graph. We expect this provide a
joint mechanism in consolidating useful multimodal behavior
information in uT by considering inter-speaker relations. In the

backbone AMFN, the modality specific LSTMs are attentively
re-weighted as context vectors using the learned attention vec-
tors am = softmax(tanh(WT

mhm)) from hidden vectors hm.
These context vectors are concatenated with the speaker aligned
memory vector uT to the following DNN classification layers.

3. Experiment
3.1. Experimental Setup

In this work, we train six different models to conduct a set of
binary recognition tasks in classifying whether each of the six
targeted emotion is present or not as our evaluation scheme. We
compare our method to the following methods:

• PAaAN: The multimodal architecture without personal-
ized attention proposed in [15]

• MFN: Memory Fusion Network proposed in [16]

• GMFN: Graph Memory Fusion Network in [17]

• AMFN: Our proposed Attentive Memory Fusion Net-
work without speaker aligned graph learning

• P-AMFN: Using PAaAN approach [15] of integrating
speaker embedding in the learning of memory block in-
stead of graph convolution layer proposed in this work

• SaGMN: Our proposed speaker aligned graph memory
multimodal framework

We first compare to a set of multimodal baseline archi-
tectures including PAaAN, MFN, GMFN, and our backbone
AMFN. PAaAN indicates the multimodal attention learning ar-
chitecture, i.e., without the personalized profile, previously used
in [15]. MFN and GMFN represent two other multimodal learn-
ing frameworks recently proposed. AMFN is our modified at-
tentive memory fusion network without speaker-aware learning.
Furthermore, since our backbone learning is based on AMFN,
we additionally compare to using the personalized profile inte-
gration learning strategy [15], i.e., by computing the distance of
each individual speaker embedding derived from GhostVLAD
to the background corpus, and concatenate this information into
the learning of memory block, denoted as P-AMFN.

The data are split into training, validation, and testing sets
followed the same experimental setting of the database paper
[17] which corresponds to 14984, 1709, and 4321 samples in
the three sets, respectively. In SaGMN, the parallel LSTM net-
works have [128,256,64] hidden dimensions for [T,V,A] fea-
tures. fGC has 256 output nodes and fû has two layers with
128 and 32 nodes. Both fγ1 and fγ2 have a single 32-node layer
and the memory size is 128. The final recognition network is a
2-layer fully connected feedforward neural network with 128
and 64 neurons. We use Adamax optimizer to train the model
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Figure 2: This is the visualization of memory layer. The left and
right figures are from AMFN and SaMFN, respectively. The
targeted sample is represented in a red triangle and the other
samples are sketched in different colors based on similarity.

in 200 epochs with 64 batch size and 0.0001 learning rate. The
architecture parameters are selected from {32,64,128,256,512}
based on validation performances while the testing set results
are presented. Three different evaluation metrics are included,
i.e., F1 score (F1), unweighted average recall (UAR) and accu-
racy (WA), in order to provide more complete results as com-
pared to most prior works that report part of these metrics.

3.2. Experimental Results

The summary of the emotion recognition is demonstrated in
Table 1. Our proposed SaGMN achieves 72.4% ACC, 74.7%
F1, and 65.1% UAR in 6-class averaged emotion recognition
performances which are 4.17%, 3.89%, and 5.34% relatively
improved in terms of the model without speaker alignment,
AMFN. When comparing multimodal architectures (without the
speaker-aware memory block learning), AMFN obtains 69.5%
WA, 71.9% F1, and 61.8% UAR which is generally higher than
LF-LSTM, MFN and GMFN. Among these multimodal frame-
works, the two renowned models, MFN and GMFN obtain com-
parable results with each other. MFN has higher WA and F1
(63.7% and 67.2%) while GMFN obtains 61.5% averaged UAR.
We observe similar results in LF-LSTM demonstrating high WA
and F1 though lower UAR than MFN and GMFN. This also
shows the importance in reporting all of these metrics in com-
paring between models. AMFN utilizes modality specific atten-
tion blocks to re-weight important time step, and the memory
block additionally accumulates key discriminatory multimodal
information. The results of AMFN achieve the highest accuracy
across all three metrics when compared with LF-LSTM, MFN
and GMFN. The AMFN is used as our mutimodal backbone ar-
chitecture in performing the emotion recognition learning.

When examining the emotion recognition accuracy ob-
tained in learning with the extracted speaker embedding that
aligns speaker space, P-AMFN outperforms AMFN, i.e., with-
out speaker information, by 1.25% relative F1 improvement.
Our proposed method, SaGMN, further obtains 2.84%, 2.61%,
and 5.19% relative improvement over P-AMFN on ACC, F1,
and UAR metric, respectively; except for rare class of fear and
surprise, we observe a consistent improvement across all met-
rics. This results demonstrate that by modeling inter-speaker
through a graph structure is much more effective in handling
individual variability in improving emotion recognition accu-
racy than simply concatenating speaker embedding in the mem-
ory block [15]. The CMU-MOSEI database includes a large
speaker set where each utters few utterances, it is encouraging
to see our framework is able to obtain a state-of-the-art recog-
nition rate in a scenario that is closer to real world applications.

3.3. Visualization Analysis

In this section, we analyze the effect of integrating speaker em-
bedding in the learned multimodal memory. We visualize both
the final memory vector uT in AMFN and SaGMN by TSNE 2-
dimensional projection from the angry classification model (the
one that obtains the highest accuracy). Figure 2 shows results
from AMFN in the left and SaGMN in the right. The targeted
sample is represented with a red triangle; the color bar indi-
cates the similarity degree computed between all samples in the
database and this targeted sample, where darker green indicates
higher similarity and purple indicates low similarity.

One thing to notice is the dark green samples in the AMFN
are scattered over the memory vector space. We observe these
dark green samples are more concentrated around the targeted
sample in our proposed SaGMN. By examining these dark green
samples, we also see that most of these green samples are in
fact coming from the same speaker as the targeted sample. This
provides an simple illustration that our proposed SaGMN using
graph convolution layer on the speaker embedding adjacency
matrix, has an effect on aligning speaker space, i.e., those with
similar vocal characteristics would be memorized to have multi-
modal behavior representation closer to each other. Having this
clustered speaker space effect in the memory block helps the
backbone memory fusion network to enhance emotion discrim-
ination. Another thing to note is that the robustness of the pre-
trained speaker embedding extraction network is also important
in the function of SaGMN. This pre-trained embedding achieves
a fairly robust 5.60% EER on this CMU-MOSEI database.

4. Conclusion
Individual speaker’s idiosyncratic behavior variability increases
the complexity in the task of learning multimodal emotion
recognition for real world applications. To address this is-
sue, we propose a Speaker aligned Graph Memory Network
(SaGMN) to embed inter-speaker vocal characteristics in a
graph convolutional layer in the memory block for multimodal
emotion recognition. Our framework uses robust speaker em-
bedding extracted from a speaker recognition pre-trained net-
work. The similarity based graph consequently aligns the sam-
ples in a latent speaker space. The speaker aligned multimodal
information is accumulated over time and encoded in the mem-
ory block. Our framework obtains a state-of-the-art on a large-
scale affective corpus across three evaluation metrics. Our anal-
ysis also shows that similar samples converge together after
speaker alignment in the memory layer.

In this work, we integrate speaker’s idiosyncratic informa-
tion in a emotion recognition framework through the use of
speaker embedding. There are several directions to extend this
work. Firstly, each speaker has around one minute expressions
in the CMU-MOSEI database. Since the total length require-
ment of each individual’s data would determine the general-
izability and usability of our framework in real world scenar-
ios, we will investigate the emotion discriminatory effect of
speaker space alignment as a function of data quantity. Sec-
ondly, we will explore additional graph algorithm to model the
latent speaker relations, e.g., hypergraph for complex links and
graph pooling for redundancy pruning. Finally, the current char-
acterization of speaker space is through vocal characteristics,
which may not capture the full spectrum of personal factors
such as gender, age, personality, we will explore approaches
in constructing the speaker space with multimodal signals to
further improve the robustness of our framework.
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